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Abstract. Two strategies of randomized search, namely adaptive cluster covering (ACCO), and
adaptive cluster covering with descent (ACD), are introduced and positioned in the group of the
global optimization techniques. Several algorithms based on these new strategies are compared with
other techniques of global randomized search in terms of effectiveness, efficiency and reliability. The
other techniques include two versions of multistart, two versions of the controlled random search
(CRS2 and CRS4) and the canonical genetic algorithm. Thirteen minimization problems including
two parameter identification problems (for a flexible membrane mirror model and a hydrologic
model) are solved. The algorithm ACCO, and a version of CRS4 algorithm (Ali and Storey 1994)
show the highest efficiency, effectiveness and reliability. The second new algorithm, ACD, is in some
runs very efficient and effective, but its reliability needs further improvement.
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In the present paper two strategies of global search are considered – adaptive cluster
covering (ACCO) and adaptive cluster covering with descent (ACD). In order to
show its relation to the existing techniques, we give a brief overview of related
techniques and compare the performance of the two algorithms to other existing
methods.

1. Posing an optimization problem

A global minimization problem (GOP) with box constraints is considered: find an
optimizerx∗ such that

f ∗ = f (x∗) = min
x∈X f (x) (1)

where the objective functionf (x) is defined in the finite interval (box) region of
then-dimensional Euclidean space:

X = {x ∈ Rn : a 6 x 6 b (componentwise)} (2)
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Thisconstrained optimizationproblem can be transformed to anunconstrained
optimizationproblem by introducing thepenaltyfunction with a high value outside
the specified constraints. In cases when the exact value of an optimizer cannot
be found, we speak about itsestimateand, correspondingly, about itsminimum
estimate.

Approaches to solving the problems (1), (2) depend on the properties off (x).
The following cases may be considered:
(1) f (x) is a single- or multi-extremum analytically expressed function;
(2) f (x) is a single-extremum function which is not analytically expressed;
(3) no assumptions are made about the properties off (x), so in general case it is

multi-extremum function which is not expressed analytically.
An important class of problems where multi-extremum optimization helps, in-

cludes problems ofparameter optimization(identification, calibration) for a model
of a physical system where the objective is to identify the values of model parame-
ters that are not known a priori. This is achieved by feeding the model with input
data, and comparing the computed output variables with the values measured in the
physical system. The difference should be minimized by solving an optimization
problem in which the independent variables are the unknown model parameters.
Given the vectorOBSt of observed values for the output variables and the corre-
sponding vectorMODt of the modelled values at time momentst = 1 . . . T , one of
the widely used evaluation criteria for thediscrepancy(error) between the model
results and observations is

E = 1

T

T∑
t=1

wt(OBSt −MODt )
γ (3)

whereγ is taken between 1 and 2, andwt is the weight associated with particular
moments of time (forγ = 2 andwt = 1, E is the mean square error). Duan et
al. (1993) and Pintér (1995) report the high degree of non-linearity and often the
non-smoothness of such functions.

In practice, the GOP of calibration is sometimes solved simply by applying
single-extremum function minimization (local search). In other problems when
an analytical expression of an objective function is available and derivatives can
be computed then gradient-based methods are used (Jacobs 1977). In the case
when no analytical expression is given and derivatives cannot be computed direct
search methods can be used such as downhill simplex descent (DSD) (Nelder and
Mead 1965) or direction set method (Powell 1964). Brent (1973) and Press et al.
(1990) describe the modification of Powell’s method, where the line minimization
is achieved by bracketing and quadratic interpolation. It has been modified for the
use in constrained optimization problems by the introduction of a penalty function
outside the constraints interval. This latter method is referred to in this paper as the
Powell–Brent method.

Many of the engineering applications done in the 1970s and 1980s used ac-
cepted methods for single-extremum function minimization, but often without the
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investigation of unimodality. Most researchers recognized the problem of the ‘good’
initial starting point, and even mentioned the necessity of trying several such points,
but the consideration of the rigorous practical procedures have been outside their
attention. This can be partly attributed to the lack of awareness within the engi-
neering community of developments in the area of global optimization.

2. Approaches to the multi-extremum minimization

The reader is referred to Archetti and Schoen (1984), Pintér (1995), Rinnoy Kan
and Timmer (1984), Shoen (1991), Törn and Žilinskas (1989), Zhigljavski (1991),
for an extensive coverage of various methods. Many algorithms aimed at global
search include various ideas so that no accurate grouping of methods is possible.
However, for the purposes of this paper we may distinguish the following groups:
– set (space) covering techniques;
– random search methods;
– methods based on multiple local searches (multistart);
– evolutionary and genetic algorithms;
– other methods (simulated annealing, trajectory techniques, tunneling approach,

analysis methods based on a stochastic model of the objective function).
We will briefly consider some other methods of randomized search which will be
used for comparison with adaptive strategies ACCO and ACD introduced later.

2.1. CONTROLLED RANDOM SEARCH (CRS)

Price (1978, 1983, 1987) proposed several versions of algorithm calledcontrolled
random searchin which the vectorrk is generated on the basis of a randomly
chosen subset of previously generated points. The basic idea is that at each iteration
a simplex is formed from a sample and a new trial point is generated as a reflection
about the centroid of the remaining points; the worst point in the original set is
replaced then by the new trial point. The Nelder-Mead-type local search is incor-
porated in the version CRS3 of Price (1987) The ideas of Controlled random search
algorithms have been further extended by Ali and Storey (1994a) producing CRS4
and CRS5; see also subsequent publications mentioned in Törn WWW (1997).

The versions of the controlled random search implemented and tested in this
study were CRS2 (Price 1983) and a modified version of CRS4 (Ali and Storey
1994a). In CRS4 the non-uniform Hammersley distribution, which provides ‘more
uniform’ sampling, is used for the initial sample. When the new best point is
found, it is ‘rewarded’ by an additional search around it in which points from beta-
distribution are sampled. CRS4 was modified using for the initial sample uniform
distributions rather than the Hammersley distribution. The modification of CRS
is referred to here as CRS4a. It appeared that on several functions CRS4a showed
better results than the original CRS4. This however, can be attributed to differences
in implementation. CRS2 and CRS4a are used in the comparisons below.
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2.2. MULTISTART AND CLUSTERING

The basic idea of the family ofmultistart methods is to apply a local search pro-
cedure several times, and then to make an assessment of global optimizer. The
comparison of algorithms undertaken in this paper will include two multistart al-
gorithms –Multis and M-Simplex. They are both constructed according to the
following pattern:

Step 1. Generate a set ofN random points and evaluate the functionf at each of
these points.

Step 2(reduction). Reduce the initial set by choosingp best points (with lowest
value off).

Step 3(local search). Launch local search procedures starting from each of the
p points. The best point reached is the minimizer assessment.

In Multis, the Powell-Brent local search (see Brent 1973; Powell 1964; Press et
al., 1990) is used at step 3.M-Simplexis similar toMultis, but instead of Powell–
Brent search the downhill simplex descent of Melder and Nead 1965 is used.

Popular versions of multistart and other GO algorithms are based on a priori
clustering of potential starting points. These can be found in Becker and Lago
(1970) and Törn (1973, 1978). Theregion (area) of attractionof a local minimum
x∗ is the set of points inX starting from which a given local search procedureP
converges tox∗. In the ideal case, the multistart methods aim at beginning this local
search procedure exactly once in every region of attraction (Törn and Žilinskas
1989).

Two typical problems are connected with clustering methods. Firstly, clusters
may contain several areas of attraction and the local search procedure may miss
the global minimum; such a situation can be termedunderclustering. Secondly,
one region of attraction may be divided over several clusters. In this case the local
search procedure will locate the same minimum more than once with correspond-
ing redundant function evaluations; this situation may be calledoverclustering.
Both ACCO and ACD strategies use clustering as the first step of randomized
search.

2.3. EVOLUTIONARY STRATEGIES AND GENETIC ALGORITHMS

The family ofevolutionary algorithms (EA)is based on the idea of modelling the
search process of natural evolution, although these models are crude simplifica-
tions of biological reality. EAs introduce some modifications to random search and
use terminology from biology and genetics. For example, for a random sample
at each iteration pairs of parent individuals (points) selected on the basis of their
‘fit’ (function value) recombine and generate new ‘offspring’. The best of these are
selected for the next generation. Offspring may also ‘mutate’. The idea is that fit
parents are likely to produce even fitter children. In fact, any random search may be
interpreted in terms of biological evolution: generating a random point is analogous
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to a mutation, and the step made towards the minimum after a successful trial may
be treated as a selection.

Historically, evolutionary algorithms have been developed with three variations:
evolution strategies (ES), evolutionary programming (EP), and genetic algorithms
(GA). Back and Schwefel (1993) give an overview of these approaches, which
differ mainly in the types of mutation, recombination and selection operators. A
canonicalgenetic algorithm(Goldberg 1989; Holland 1975; Michalewicz 1996)
has received lately a lot of attention, and not only in professional publications.
Applications of evolutionary algorithms, especially GAs, are found in many areas;
see, for example, Cieniawski (1995), Gulsen et al. (1995) and Wang (1991).

Several versions of GAs were compared (including versions with the ‘tourna-
ment’ and ‘fitness rank’ selection) and the one that performed best was chosen
for the present study. This is a variant of GA with the ‘fitness rank’ selection,
one-point crossover, 15-bit coding of variables, bit mutation, and preservation of
the best points discovered so far. A complex termination condition is employed,
involving the fractional proximity of the found minimum estimate to the averaged
function value of the predetermined percentage (20%) of the population, the num-
ber of iterations without improvement in the function value, and the total number
of iterations. In each generation checks were made for the appearance of repetitive
points to prevent redundant re-evaluations.

3. The strategy of adaptive cluster covering

The basic ideas behind this approach were first outlined by Solomatine (1995).
They are described here in more detail. The strategy of adaptive cluster covering
(ACCO) was first conceived as a workable combination of some common sense
ideas that could be useful in general-purpose search. Most of these ideas such as
reduction, clustering and covering, have been discussed in the literature on global
optimization for a long time, and used in different methods of search.

Becker and Lago (1970) used clustering in GO for the first time, shortly after
the idea had been developed by A. Törn. Subsequently it was used in many algo-
rithms (Törn and Žilinskas 1989). The algorithm of Becker and Lago (BL) used
the subsequent clustering of points in subregions with reduction of samples. The
idea of subsequent reduction is indeed similar to that used in ACCO. However,
the difference is that clustering is used only once in ACCO, and then instead of
clustering, the subsequent covering is applied. The ACCO strategy is based on the
following four principles:

1. Clustering.Clustering is used in multistart algorithms to identify regions
of attraction and to launch procedures of single-extremum search in each region.
However, the situation when clusters contain several areas of attraction and the
local search procedure launched once will miss the global minimum (what is called
hereunderclustering) may easily happen, and papers describing this class of mul-
tistart algorithms normally warn the possible user.
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In the proposed strategy, clustering is also used for the purpose of identifying
promising regions. But instead of assuming the existence of a local minimum and
launching the local search, it is proposed that these regions should be used as sub-
domains of the objective function, and that global search is continued by covering
in each subdomain.

2. Covering shrinking subdomains.The idea of covering is used in set covering
algorithms, and in pure direct random search. In the considered strategy, the type of
covering is not fixed as, say, grid (passive), active or purely random (uniform). In
the version of an algorithm described below, random covering of each subdomain
is used; that is, the values of the objective function are assessed at points drawn
from the uniform or some other distribution. The procedure of covering is repeated
many times for the subdomains that are progressively reduced in size.

3. Adaptation.Adaptive algorithms update their algorithmic behaviour depend-
ing on new information revealed about the problem under consideration. ‘Behav-
iour’ is influenced by a number of different things: parameters, like step or standard
deviation; converging properties (stopping rules), or even various techniques and
approaches used. In the case of the global search problems the algorithmic behav-
iour can change from step to step as, for example, in the case where the assessment
of the function variation rate (Lipschitz constant) or the expected position of the
global optimum is changing. In the considered strategy, the implementation of
adaptation is inshiftingthe subregion of search,shrinkingit, and changing the den-
sity (number of points) of each covering, depending on the previous assessments
of the global minimizer.

4. Periodic randomization.Due to the probabilistic nature of points generation
any strategy of randomized search may simply miss a promising region for search
(similar to the situation when local search procedures may miss the global min-
imum). In order to reduce this danger it is reasonable to re-randomize the initial
population, that is, to solve the problem several times or (and) to re-randomize
some populations at intermediate steps.

Depending on the implementation of each of these principles it is possible to
generate a family of various algorithms using non-rectangular domains (hulls),
non-uniform sampling and various versions of cluster generation and stopping
criteria. These may be suitable for certain situations such as different types of ob-
jective functions. In the present work one algorithmic implementation is presented
(ACCO-1), so the abbreviation ACCO will be used both for the strategy and for the
algorithm.

3.1. ALGORITHM ACCO (ACCO-1): IMPLEMENTATION OF THE STRATEGY OF

ADAPTIVE CLUSTER COVERING

0. l = 0.
1 (initial sampling). Sample uniformly an initial population ofN points in

feasible domainX.
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2 (initial reduction). Compute the function valuefi at each point and reduce the
population by choosingp best points (with lowestfi).

3 (initial clustering). IdentifykN clusters, such that the points inside a cluster are
‘close’ to each other, and the clusters are ‘far’ from each other. For each cluster,
identify the smallest region (n-dimensional interval or a hull) for the subsequent
search containing all points from the cluster. Set current region numberk = 1. Set
regional iteration numbere = 1.

4 (start of subsequent regional iteration e). Samplerk points inside regionk,
evaluatef at each of them, and choosesk best points creating the setRk. Reduce
the region so that it includes the best points only.

5 (shifting to the center of attraction). Identify the ‘center of attraction’ of the
region. This could be the best point or the centroid of the best subset. Shift the
region so that its center coincides with the center of attraction.

6 (shrinking). Reduce the size of the region so that its linear size would bevk%
of the previous one.

7 (stopping criteria for the current regional iteration). Check criteria:
– C1 is achieved when a fixed numbere1 of regional iterations is reached;
– C2 is achieved if average function value for the bestu% points inRk does

not differ (fractionally) more thanw from the same value computed at the
previous iterationk − 1;

– C3 is achieved if during the laste2 regional iterations, there was no improve-
ment of the minimum estimate.

If (C1 orC2) andC3, then begin

if k = km, then go to 8;
prepare processing of the next cluster (region): setk = k + 1; e = 1;

end
else begin

prepare the subsequent regional iteration: Check criterionC2B (the average
function value in the regional setRk is larger than the average of all points
evaluated so far, that is, the region seems to be ‘non-interesting’)
if C2B then

(‘non-interesting’ region) considerably decrease the sample sizerk for the
next iteration byrdk% (e.g., 30%)

else
(‘interesting’ region) slightly decreaserk by rik% (e.g., 5%);

sete = e + 1.
end;
Go to 4.
8 (final accurate search). Construct the region with the linear size ofq% of the

domain interval around the best point found so far. Perform shifting and shrink-
ing (steps 5 and 6) in a repetitive fashion until the stopping criterionC1 or C2 is
satisfied.

9. Check whetherl = T . If yes, then STOP, otherwise setl = l+1 and go back
to step 1.
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Figure 1. ACCO in 2-variables case. Domain is randomly covered, points are evaluated,
‘good’ ones are clusterized; for each cluster, smaller regions are repetitively formed around
the currently ‘best’ point and progressively covered: (a) initial sampling and clustering; (b)
regional iteration 1 with the ‘best’ point indicated; (c) regional iteration 2 with the new ‘best’
point indicated.

Figure 1 shows the initial sampling, and the regional iterations 1 and 2 for cluster
k = 1 in a two dimensional case. For functions with ‘curved’ surfaces a non-
rectangular shapes for subregions (e.g., hulls of best points subsets) may be more
efficient. Other versions of the algorithm with this feature and which use sampling
from the beta-distribution are currently being explored. At the moment, however,
however, no assumptions were made about the Lipschitz constant, so the issue
of accuracy is left open for future research. A potentially useful idea is to draw
conclusions periodically from the values of the current density and the assessments
of the Lipschitz constant to determine when to stop.

Returning to the BL algorithm of Becker and Lago (1970), described also in
Törn and Žilinskas (1989) and which is ideologically close to ACCO, we must
state that

(i) in BL, the global search in subregions is based on the subsequent multiple
recursive clusterizations in each initial cluster. Indeed, in some cases the number
of local optima is very high and such approach is then justified; however a priori
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the properties of the function surface are not known, and it is not necessary to find
all local optima. For practical problems it is more reasonable to use the subsequent
covering combined with reduction and shrinking subregions;

(ii) in BL, as the number of points in subsamples is reduced, it may easily
happen that the volume of the corresponding subregions will not decrease, or only
decrease slowly due to the existence of ‘average’ points close to the boundaries.
ACCO takes a more direct approach by forcing the volume to decrease stepwise;
at the same time, reduction is applied to get rid of ‘bad’ points.

Choice of parameters.The ranges for parameter values used in the experiments
were: initial populationN = 30. . . 1000; reduced initial populationp = 40. . . 300;
number of clusterskN = 3 . . . 20 depending onp; initial sizerk of a cluster sample
variable starting from the initial number of points in the cluster; numbersk of
points to whichrk is reduced equal tork ; percentage of best points for criterion
C2: u = 30%; number of regional iterationse1 = 3 . . . 15; minimum number
of regional iterations made without improvement in function value:e2 = 2 . . . 5;
w = 1 . . . 5; v = 70. . . 95%; T = 1 . . . 5. In the particular experiments re-
ported below, the following values were used:e2 = 2, T = 1, v = 75%, u =
50%, w = 0.01, rd = 5%, ri = 30%, q = 15%. The maximum number of
function evaluations was not limited.

A critical parameter appeared to be the number of regional iterationse1. When
it was too low it prevented the global minimum being reached, and when it was too
large then number of function evaluations (f.e.) increased leading to a minimum
that was normally reached anyway in subsequent steps. The following rule was
found reasonable to use: for 26 n 6 4, e1 is set to 3, for highern e1 is set ton
div 10+ 4. An important parameter is the number of generated pointsrk at each
iteration. Setting it to the original number of points in the cluster appeared to work
well in most cases.

Other critical parameters were the size of initial populationN and the number
of clusterized pointsp. It was decided to keep the linear dependency betweenN

and the dimensionn; and betweenp andn. For comparisons the following rule
was used: withn rising from 2 to 30,N increases from 50 to 300, andp from 40
to 200 respectively.

In the version of ACCO incorporated in the GLOBE system the user can set the
parameters manually. In the next version it will be possible to choose one of the
several sets ofparameter set rules (PSR)which have been constructed on the basis
of multiple experiments with ACCO.

In steps 7 and 8, the stopping ruleC2 is used to check if there is no improvement
in the function value. The ruleC1 limits the number of iterations ensuring that the
search will not take too long, and the ruleC3 (connected toC1 andC2 by AND
operator) ensures that the search in a certain region is not dropped prematurely.
Finally, the ruleC2B is made responsible for limiting the search efforts in ‘non-
interesting’ regions. Different sets of PSRs may represent different strategies of
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search that a user would like to follow, depending on how expensive (long) is one
evaluation off . For example, the user may want to specify the approximate total
number of function evaluations allowed. The rules will then identify the necessary
values for the number of clusterskN , the number of the sample size in the iteration
rk, and the numbere1 of regional iterations. It must be stated that more experiments
are needed to find a reasonable compromise between the mentioned parameters.

3.2. ACCOL STRATEGY: THE COMBINATION OF ACCO WITH THE MULTIPLE

LOCAL SEARCHES

In this strategy of global search, referred to as ACCOL (adaptive cluster covering
with local searches) there are two phases:

1. ACCO phase.ACCO strategy is used to find several regions of attraction
represented by the promising points (‘potent points’) which are close to potential
minimizers. The potent setP1 is formed by taking the best point fromRk found
for each cluster during the progress of ACCO. After ACCO stops, the setP1 is
reduced toP2 by identifying severalm(1 . . . 4) best points which are distant from
each other, with the distance at each dimension being larger than, say, 10 percent
of the range for this dimension;

2. Local search (LS) phase. An accurate algorithm of local search is started
from each of the potent points ofP2 (multistart) to find accurately the minimum.
The version of Powell-Brent search was used.

The advantage of such approach compared with traditional multistart is the
significant economy in function evaluations. This is due to
– the significant decrease in the dangers brought byunderclustering;
– significantly less function evaluations needed by ACCO to process one cluster,

than one direct LS;
– the elimination of the most ‘non-interesting’ potent points fromP1 and conse-

quently the significant reduction in the number of the necessary multistarts made
because ACCO moves the representatives of areas of attraction (potent points)
much closer to potential minimizers;

– the faster convergence of LS because ACCO moves the starting potent points
much closer to potential minimizers.

4. Adaptive cluster covering combined with downhill simplex descents

The comparative experiments with several GO algorithms have shown the effi-
ciency and effectiveness of the ACCO and ACCOL algorithms. These experiments
have also shown certain attractive features of the downhill simplex descent (DSD)
of Nelder and Mead (1965). This method appeared to perform well in a region
which was not too close to the local optimizer, so that just several steps of DSD
could be used in order to move ‘good’ points considerably closer to an optimizer.
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The algorithm combining the positive features of both approaches has been
built and calledadaptive cluster covering and descentor, in short,adaptive cluster
descent (ACD). Its basic idea is also to identifying the area around the possible
local optimizer using clustering, and then apply covering and DSD in this area.
The main steps of ACD strategy are:
– sample the points (e.g., uniformly) and reduce the sample to contain only the

best points;
– cluster the points, and reduce the clusters to contain only the best points;
– in each cluster, apply the limited number of steps of DSD to each point, thus

moving them closer to an optimizer;
– if the cluster is potentially ‘good’, that is, contains points with low function

values, cover the proximity of several best points by sampling more points, for
example, from the uniform or beta distributions;

– apply local search such as DSD or some other algorithm of direct optimization
starting from the best point in ‘good’ clusters. In order to limit the number of
steps, the fractional tolerance is set to be, say, 10 times higher than the final
tolerance, that is, the accuracy achieved is the average. Then apply the final
accurate search, again DSD, starting from the very best point reached so far.
The resulting point is the assessment of the global optimizer.
This strategy was realised in the form of the following algorithm.

4.1. ALGORITHM ACD (ACD-1): IMPLEMENTATION OF THE STRATEGY OF

ADAPTIVE CLUSTER DESCENT

1 (initial sampling). Sample uniformly the initial population ofN points in feasible
domainX.

2 (initial reduction). Compute the function valuefi at each point and reduce the
population by choosingp best points (with lowestfi).

3 (initial clustering). Identify kN clusters, such that the points inside a cluster
are close to each other and the clusters are far from each other. For each cluster
identify the smallest region (n-dimensional interval or hull) for the subsequent
search, which contains all points from the cluster. Set the current region number
k = 1.

4 (reduction). Check the criterionC2B which states that the average function
value in the regional setRk is lower than the average of all points clustered in step
3 (‘interesting’ region). IfC2B then

reduce the sampleRk by rd1%; set the number of descent steps tods1;
else (‘non-interesting’ region)

reduce the sampleRk by rd2%; set the number of descent steps tods2;
5 (several steps of downhill simplex descent). For each point inRk performds

steps of DSD. InRk replace all points by the new points reached as a result of these
descents.

6 (region update). Construct the new region containing all points fromRk .
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7 (additional covering). If C2B (‘interesting’ region) then selectcpk points and
samplecrk points in theε-proximity of each of them. Thisε is taken as percentage
of the size of the region containingRk. Evaluatef in all of them and add these
points toRk.

8 (intermediate downhill simplex descent). For the best point inRk perform
DSD until the predefined intermediate accuracy is reached. Store the newly reached
point in the setR2.

9. Increasek by 1. If k 6 kN ,goto 4.
10 (final downhill simplex descent). For the best points fromR2 perform DSD

until the predefined final accuracy is reached. The resulting best point is the global
optimizer assessment.

The author is grateful to a reviewer who pointed out the similarity of the ideas
behind this algorithm to those of an early multistart algorithm proposed by Törn
(1978). In his algorithm the parallel local searches are stopped repeatedly, the
working points are clustered and a reduced number of processes from each cluster
are resumed. This difference is similar to that between ACCO and BL: instead of
repetitive clustering the method advocated in this paper uses covering instead.

Choice of parameters.In ACD there are less parameters to choose than in ACCO.
The parametersN and p depend linearly on dimensionn, like in ACCO. The
critical parameters appeared to be the numbers of DSD stepsds1, ds2. If they are
too high, the number of f.e. increases considerably. However, experiments showed
that the proximity of a ‘good’ point reached in this way is usually reached anyway
at a later stage at steps 7–10. Another critical parameter is the fractional tolerance
of the intermediate DSD in step 8. If it is small then there is an increase in f.e.,
again without much gain.

The values for parameters were chosen following multiple experiments with
the algorithm in terms of delivering the acceptable effectiveness and efficiency.
All parameters were investigated but mainly with the parametersrd1, rd2, ds1
and ds2 used in criterionC2B , and the following values were chosen:rd1 =
50%, ds1 = 4, rd2 = 67%, ds1 = 2. Parameterscpk andcrk were taken as being
equal to 3 and 5 respectively. Theε-proximity for covering was set to be 33% of the
region containing the remaining points in the cluster. For the intermediate DSDs
the fractional tolearance of 0.1 was used, with the fractional tolerance of 0.01 used
for the final DSD.

4.2. ACDL ALGORITHM : COMBINATION OF ACD WITH THE MULTIPLE LOCAL

SEARCHES

Following the idea used in ACCOL as described above it is now possible to con-
struct the strategy of global search, referred to as ACDL (adaptive cluster covering
and descent with local searches). This consists of two phases:
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Figure 2. Organization of the calibration process using GLOBE.

1. ACD phase. The ACD strategy is used to find several regions of attraction
represented by the promising points that are close to potential minimizers (‘potent’
points). The potent setP1 is formed by taking one best point fromRk found for
each cluster during the progress of ACD. After ACD stops the setP1 is reduced
to P2 by selecting only severalm (1 . . .4) best points which are distant from each
other, with the distance at each dimension being larger than, say, 10% of the range
for this dimension.

2.Local search (LS) phase. An accurate algorithm of local search is started from
each of the potent points ofP2 (multistart) to find accurately the minimum. As in
Multis and ACCOL, the version of the Powell–Brent non-derivative minimization
is used. The value of LS in ACDL is less than in ACCOL, since the final step
in ACD is the accurate local search DSD. These multiple Powell–Brent searches
normally allow the achievement of a slightly higher accuracy than with DSD.

Changing the algorithm in the process of search (structural adaptation) used
in ACCOL and ACDL has shown the high efficiency and effectiveness of such a
scheme. This is because they combine the efficiency of the first stage (ACCO or
ACD) in identifying quickly the minimum assessment and the effectiveness of local
search which, if started from the point close to the minimum, reaches the minimum
with the high degree of accuracy.
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5. Global optimization tool GLOBE

The PC-based system GLOBE has been built by the author to apply the global
optimization techniques to the problems of model calibration. GLOBE can be con-
figured to use an external program as a supplier of the objective function values.
The number of independent variables and the constraints imposed on their values
are supplied by the user in the form of a simple text file. Figure 2 shows the organi-
zation of the calibration process.Modelmust be an executable module (program)
which does not require any user input. The user has to supply two transfer programs
P1andP2. These three programs (Model, P1, P2) are activated from GLOBE in a
loop. GLOBE runs in DOS protected mode (DPMI) providing enough memory to
load the program modules. It can be downloaded fromwww.ihe.nl/hi.

The user interface includes several graphical windows displaying the progress
of minimization in different coordinate planes projections. The parameters of the
algorithms can be changed easily by the user.

Currently GLOBE includes several algorithms, of which the following algo-
rithms of randomized search are included for comparison:
– CRS2 (controlled random search, by Price 1983) described above;
– CRS4a (our modification of the controlled random search by Ali and Storey

1994a);
– genetic algorithm (GA);
– Multis – multistart algorithm, as described above;
– M-Simplex – multistart algorithm, as described above;
– adaptive cluster covering (ACCO);
– adaptive cluster covering with local search (ACCOL).
– adaptive cluster descent (ACD);
– adaptive cluster descent with local search (ACDL).

It is planned to complement GLOBE by such methods as simulated annealing,
topographical multilevel single linkage (Ali and Storey 1994b; Törn and Viitanen
1994) and other reportedly efficient methods.

6. Comparing nine algorithms

Comparison of algorithms proposed by different authors is always a difficult task
since so much depends on the details of implementation. Quite naturally, authors
try to design the test suite in a way that would show the best features of the pro-
posed algorithm. In spite of that, testing is always useful since it gives general idea
about the algorithms’ performance and may point to classes of functions where
this or that algorithm excels. Every effort was made to make the comparison as fair
as possible, despite the possible differences in various parameters and stopping
conditions.

The nine algorithms were tested on a number of runs using a set of several op-
timization problems. These included the traditional benchmarks functions used in
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optimization with known global optima (Dixon and Szegö 1978; Duan et al. 1993;
Griewank 1981; Rosenbrock 1960), and the two problems of model calibration
where the global optima were unknown (Table 1).

The first calibrated model was a model of aflexible membrane mirror(Vdovine
et al. 1995) with 3 parameters. The model is based on a finite-difference solution
of simultaneous partial differential equations describing the deflection of a round
membrane under the influence of a magnetic field created by three concentric ac-
tuators. The problem is to identify the voltages for these actuators that fit the shape
of the membrane to a predefined parabolic shape. The second calibrated model was
the hydrologic rainfall-runoff model SIRT(a so-called, conceptual lumped model
with 8 parameters, a version of the Sugawara (1978) model). The model was run
on data for a Latin American river basin. Calibration pushed the model accuracy to
its limit: lower error values can be obtained only with a more complex model.

The numberN of points in the initial sample and the number of points in the
reduced sample were chosen according to the rule that these numbers must grow
linearly with the dimensionn, fromN = 50 atn = 2, toN = 300 atn = 30. For
CRS2 and CRS4a the formula recommended by their authors isN = 10(n+ 1).
This givesN = 30 atn = 2, andN = 310 atn = 30. In ACCOL, ACDL, Multis
and M-Simplex the fractional tolerance of 0.001 was used. The reason of using this
fractional tolerance lies in the fact that in the problem of model calibration quite
high function values may be returned, and the use an absolute tolerance normally
leads to a very large number of f.e. with minimal gain in function value. Experi-
ments with CRS were based on absolute tolerances in order to have a comparison
base to experiments reported in the literature.

One of the important objectives of this work was the comparison of GA to al-
gorithms based on other ideas explored in GO. Since GA uses discretized variables
(we used the 15-bit coding, i.e. the range is 0...32767) an accurate comparison
would only be possible if the values of the variables for other algorithms were
discretized in the same range as well. This has been done for ACCO, ACD, CRS4.
Other algorithms, including the local search stages of ACCOL and ACDL, use
real-valued variables. Our intention was to investigate the general behaviour of the
algorithms, important from the practical point of view, rather than studying their
accuracy very close to the global minimum. In order to keep the variance of result-
ing performance indicators as low as possible the method of mutually-dependent
tests, widely accepted in simulation experiments, was used; all algorithms are fed
from the same initial random population of points.

6.1. PERFORMANCE INDICATORS

Three main performance indicators were investigated:
– effectiveness(how close the algorithm gets to the global minimum, or, if the

latter is unknown, how low its found estimate is);
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– efficiency(running time) of an algorithm includes not only the total time spent on
function evaluations but also the running time of the algorithm itself. However,
the latter is negligible compared with the former, especially in parameter iden-
tification problems when one function evaluation requires running what is often
a complex model. This is why efficiency is measured by the number of function
evaluations needed;

– reliability (robustness) of algorithms can be measured by the number of suc-
cesses in finding the global minimum, or at least approaching it sufficiently
closely. An algorithm may be not too efficient, but if at every single run it finds
practically sufficient estimate of a global minimum, it is considered a reliable
one.

6.2. EFFECTIVENESS AND EFFICIENCY

The plots on Figure 3 show the progress of minimization for some of the problems
from Table 1 (other results can be seen onwww.ihe.nl/hi/sol/p_jogo/allplots.htm).
The results are averaged across 5 runs. This was produced as follows. After each
run a plot of the function values against the number of f.e. was produced. Then for
the consecutive f.e. divisible by 50 the corresponding values for function values
were averaged across all runs and plotted. Such averaging was done while all the
runs were in progress, that is, until at least one of the runs stopped because of a
stopping condition (even though other runs were continuing), andthe last but one

Table 1. Functions used in comparing algorithms

Ref. on Function Dimension Number of Value of

Figure 3 optima the global

minimum

Rosenbrock 2 1 0.0

Hosaki 2 2 ≈ −2.338

a Rastrigin, shifted by 2.0 2 >50 0.0

Six-hump camelback (Branin), shifted by 1.036285 2 6 0.0

b Goldstein-Price function 2 4 3.0

c Flexible mirror model error 3 ? ≈0.0

Hartman3, shifted by 3.32 3 4 ≈ −0.6

d Hartman6, shifted by 3.32 6 4 ≈0.0

Shekel5, shifted by 10.5364 4 5 ≈0.0

Shekel7, shifted by 10.5364 4 7 ≈0.0

e Shekel10, shifted by 10.5364 4 10 ≈0.0

f Griewank function 10 >1000 ≈0.0

g SIRT Rainfall-runoff model error 8 ? <47.0
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Figure 3a. Reastrigin function (2-var.)

Figure 3b. Goldstein-Price function (2-var.)
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Figure 3c. Flexible mirror model (3-var.)

Figure 3d. Hartman6 function (6-var.)

point was selected to represent the situation. However,the last pointwas added
to the plot to represent the best function value found through all five runs. Some
of the line segments between the last two points are vertical. This means that the
best function value has been reached in one of the runsearlier than shown by the
abscissa of the last but one point. Note that most points of ACCOL plot correspond
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Figure 3e. Shekel10 function (4-var.)

Figure 3f. Griewank function (10-var.)

both to ACCO and ACCOL, and only some of the last points correspond to the
local search phase of ACCOL; the same applies to ACDL and ACD.

The comparison results can be summarized briefly as follows. For the functions
of 2 variables, ACCOL, CRS4a and M-Simplex are the most efficient, that is, faster
in getting to the minimum. In the flexible mirror model, Hosaki, Rastrigin and Six-
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Figure 3g. SIRT rainfall-runoff model (8-var.)

hump camelback functions M-Simplex quite unexpectedly showed the best results.
With the Rosenbrock function ACDL was also among the best methods, however,
not with other functions.

With functions of higher dimensions, which are more more interesting for the
purposes of this paper, ACCOL and CRS4a again performed best, and had similar
performance. M-Simplex was the worst with all Shekel 4-variable functions, but
was even a bit better than ACCOL and CRS4a with Hartman 3-variable and 6-
variable functions. ACDL was on average as the third best in performance after
ACCOL and CRS4a. It is a ‘slow starter’. However, on some runs ACDL showed
very high efficiency.GA is the least efficient method, and is ineffective with all
Shekel functions.

Multis and CRS2 are both effective, reaching the global minimum in most cases,
but much less efficient than other algorithms.

It is worth mentioning that the total number of f.e. made by algorithms and
the balance between effectiveness and efficiency depends significantly on the sev-
eral user-defined parameters, namely, number of clusters, cluster size, number of
iterations, etc. In GLOBE, these can be set by the user.

6.3. RELIABILITY (ROBUSTNESS)

Reliability can be measured as the number of successes in finding the global mini-
mum with the predefined accuracy. Because of the randomized character of search
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no algorithm can be 100% reliable. For most functions of 2 variables most algo-
rithms were quite reliable (with the exception of GA, which was often converging
prematurely). Only the Rastrigin function with many equidistant local minima with
almost equal values presented difficulties.

With the functions with more than two variables the situation was different. It
can be seen from Figure 3 that for most algorithms the ordinate of the last point
can be considerably less than the ordinate of the previous point. This means that the
least function value was found in just one or two of the runs, but not in all of them.
The CRS2 and Multis algorithms appeared to be the most reliable for functions
of higher dimensions but was by far the least efficient. ACDL was, however, not
always reliable even though it showed efficiency on some runs.

As seen from Figure 3, in all cases, except for GA the minimizer estimate is
normally quite close to the global minimum. Small differences could be attributed
partly to the way the real-valued variables were coded. A more accurate statistical
analysis of single-start failure probabilities has yet to be done.

7. Discussion

It is seen from the results of comparisons that the CRS2 algorithm which is perma-
nently oriented towards the whole function domain has to perform more function
evaluations, that is, it has low efficiency. Multis showed similar properties.

The lower efficiency of GA can be attributed to the type of ‘crossover’ used
(exchange of some of the parents’ coordinate values) which often leads to redun-
dant evaluations of the ‘offspring’ in the search space quite far from their highly
fit parents, and hence normally with the lower fitness. So the fitness gained by the
parents is not inherited by many of their offspring. It was also found that GA often
converges prematurely, especially in the variant with tournament selection. Wether
this feature is inherent to the whole class of evolutionary algorithms following the
ideas of natural evolution, which are indeed quite appealing but highly redundant,
or wether it is just the feature of the version of a GA implemented in this study,
has yet to be investigated. It is worth mentioning that reportedly the efficiency of
GAs can be increased by using other types of crossover, like intermediate recom-
bination in evolutionary strategies. Examples given in Back and Schwefel (1993)
show the higher efficiency of evolution strategies which reportedly better preserve
from generation to generation the identified structure of the objective function.

The relatively higher efficiency of ACCOL and CRS4a can be explained by
their orientation towards smaller search domains which is especially efficient for
high dimensions. For example, the reduction of the linear size of a box in 30-
dimensional space by half reduces its volume by more than a billion times. ACDL
on some runs has shown high efficiency but its reliability was not the best.

It is interesting to mention that due to the relative freshness of the approach and
creative ‘marketing’ genetic algorithms are currently receiving a lot of attention
and are applied to many multi-extremum optimization problems. In practically
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all areas where GAs are currently used most of the other global optimization
algorithms could be used as well.

8. Conclusions

1. Two strategies and corresponding algorithms of randomized search, namely,
adaptive cluster covering (ACCOL) and adaptive cluster descent (ACDL), were
introduced and compared to several other algorithms for several functions.

2. ACCOL was shown to have high effectiveness, efficiency and reliability. On
average, the performance of ACCOL was comparable to that of CRS4a and CRS4
(Ali and Storey 1994a), reportedly a very efficient algorithm. In many practical
problems one function evaluation is expensive (slow), and their total number is
then the critical parameter. The experience shows that in this case ACCO (without
the local search phase) would be the first choice to obtain a reasonable optimizer
assessment. In most cases ACCO was faster than other algorithms in getting quite
close to the value of the global minimum. However, more research is needed in
fine-tuning the ACCOL parameters.

3. On the basis of experience with many practical problems where the functions
of high dimensions and expensive evaluations are involved other tested algorithms
– CRS2, multistart of Powell–Brent (Multis), and genetic algorithm (GA) cannot be
generally recommended for complex problems with ‘expensive’ functions. These
algorithms either do not normally reach a global minimum, as in the case of GA, or
require many more function evaluations. If, however, a high number of f.e. is not
a critical parameter, Multis in many instances can reach an accurate solution. Mul-
tistart of the classical downhill simplex descent (DSD) (Nelder and Mead 1965)
with a preliminary reduction (M-Simplex) performs very well with the functions of
low variables. However with the functions of higher dimensions it often converges
prematurely to a local minimum.

4. The attempt to merge the attractive properties of downhill simplex algorithm
with ACCO in the ACDL algorithm proved to be efficient and effective on some
of the runs with functions of higher dimensions. However, more accurate tuning of
its parameters is needed to improve its reliability.

5. The experiments confirmed the usefulness of (1) combining an efficient (fast)
random search algorithm with the subsequent effective (accurate) local search. In
the present study, the ACCO and ACD algorithms were combined with the modi-
fied Powell–Brent method of direct non-derivative optimization and included in the
ACCOL and ACDL algorithms; (2) DSD, in combination with the reduction and
multistart (implemented in Multis), performs very well for small dimensions and
low number of local optima. In combination with ACCO (implemented in ACDL)
it shows potential for the problems of higher dimensions.

6. The choice between various methods of global optimization may depend on
the type of problem, and more research is needed to compare reportedly efficient
methods like simulated annealing, evolution strategies, topological multilevel link-
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age among others (see Ali and Storey 1994b; Locatelli and Schoen 1996; Törn and
Viitanen 1994). The best results can probably be achieved by structural adaptation,
that is, switching in the process of search between different algorithms.
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